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SUMMARY

A new interface capturing algorithm is proposed for the finite element simulation of two-phase flows.
It relies on the solution of an advection equation for the interface between the two phases by a streamline
upwind Petrov–Galerkin (SUPG) scheme combined with an adaptive mesh refinement procedure and a
filtering technique. This method is illustrated in the case of a Rayleigh–Taylor two-phase flow problem
governed by the Stokes equations. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Two-phase flows involving the combination of a gas phase and a liquid phase are commonly
encountered in daily life, especially in chemical engineering processes and the oil industry [1, 2].
These complex flows are difficult to handle from an engineering standpoint, and their accurate
modelling is still an open issue. One approach that can be used to develop a better insight is to
resort to numerical simulation.

A correct simulation of two-phase flow problems requires a reliable representation of the interface
between the two phases. Several approaches have been proposed for this purpose, which can be
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divided into Lagrangian, mixed Eulerian–Lagrangian and Eulerian methods. With Lagrangian
methods, the mesh moves and is distorted as its interface moves. In practice, this movement leads
to large amplitude deformation, and breaking or merging patterns cannot be well captured unless
a repetitive remeshing strategy is used, which makes the computation costly. In the case of the
mixed Eulerian–Lagrangian methods, the mesh is updated in the vicinity of the moving interface,
the mesh being generally kept fixed elsewhere. Note that, in recent Arbitrary–Lagrangian–Eulerian
(ALE) methods, the mesh can be improved not only near the interface, but also anywhere in
the domain where the element aspect ratio has deteriorated [3]. Thorough reviews for these two
approaches can be found in References [4, 5].

The Eulerian approach, which makes use of a fixed grid, is probably the most popular method.
The first Eulerian models, introduced 50 years ago at Los Alamos [6], are the PIC (particle-in-
cell) method and the MAC (marker-and-cell) method, both based on marker particles to follow
the interface. Later, Rider and Kothe [7] extended this idea with their so-called marker particle
method. Other methods appeared in the 1980s, such as the volume of fluid (VOF) method of Hirt
and Nichols [8]. In this case, the position of the interface is calculated through the transport of a
function representing the fractional volume of the fluid in a cell. Interface reconstruction is needed
and in the ‘original’ VOF method, the interface was approximated by vertical or horizontal straight
lines. One property of the VOF method is that mass conservation is ensured, although the interface
reconstruction is time consuming and its extension to 3D is complex. This method has since
been improved by many authors [9–12] and a review of the VOF methods can be found in
Reference [13].

Another popular way to capture an interface is the level-set method [14], where the zero level
of a smooth distance function indicates the position of the interface. Contrary to the VOF method,
this method does not conserve mass intrinsically so that high-order schemes or mesh refinement
are required for an accurate solution of the underlying advection equation. A reinitialization step
is also needed to ensure that the level-set function remains a distance function. A mass-preserving
level-set method can be found in Reference [15].

Finally, the pseudo-concentration method is based on the value of a colour function F to
determine the location of the two fluids in the domain. The value of F ranges between 0 and 1,
and the position of the interface corresponds to the position of the contour line F = 0.5. As in the
VOF or the level-set methods, F is transported by an advection equation. One of its advantage
is that it does not need interface reconstruction as with the VOF method but adaptive or mesh
refinement strategies are however required to obtain accurate solutions [16, 17].

In this work, we have chosen the pseudo-concentration method because its implementation
is relatively easy in 2D and can be extended without much difficulty to 3D. The flow situation
considered is the classical viscous Rayleigh–Taylor (RT) flow problem, which is a good benchmark
problem to assess the efficiency of an interface capturing method. In this problem, a heavy fluid
of density �1 is placed initially above a light fluid of density �2. A small initial perturbation in
the interface combined with the effect of the gravitational force results in a collapsing of fluid 1
into fluid 2. This problem is challenging owing to the evolution of the interface shape, and it is
particularly suitable to investigate the coupling of the advection of the colour function and the
momentum equations, and how the cumulative error can be controlled when the mesh is adapted
around the moving interface.

The RT flow problem is often used in literature to compare different interface tracking and
capturing methods, and a great variety of results can be found in References [18–20] for instance.
If some studies are in 3D, as in Reference [21], most of them are 2D.
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Fraigneau et al. [18] developed a Eulerian method for simulating variable density incompressible
viscous flows. They compared the finite element method and the finite volume method for the RT
flow problem in the viscous regime for two different Reynolds numbers. They showed that, even
at moderate Reynolds numbers, this problem is very sensitive to the numerical method used and,
in particular, to the mesh refinement algorithm.

Zhao et al. [19] solved the incompressible Navier–Stokes equations for two superimposed viscous
fluids on unstructured grids with the finite volume method. The free surface was computed with
the VOF method and the surface tension was taken into account. The motion of the characteristic
RT mushroom shape of the interface was studied at Re= 283.

Rudman [20] used an algorithm for volume tracking based on the concept of flux-corrected
transport (FCT) to solve the RT flow problem. He compared this method with three other VOF
techniques: the simple line interface calculation (SLIC) method, the VOF method of Hirt and
Nichols [8] and Youngs’method [22].

Popinet and Zaleski [23], as Smolianski [4] with a level-set method, revisited the work of Puckett
et al. [24] and solved the RT flow problem with a front-tracking algorithm. Marker particles were
advected in a Lagrangian manner to follow the interface. A source term to take into account surface
tension was added to the momentum equation. In Reference [24], a second-order VOF method
was used and surface tension was not taken into account.

Rider et al. [25] compared four different methods to compute the RT flow problem: an interface
capturing method, two PLIC (for piecewise linear interface calculation) methods and a coloured
particle method. In this study, the surface tension was neglected at the fluid interface. The density
ratio was 7.25 and the viscosity ratio was 1.06. They all led to similar results, though the results
obtained with the two PLIC methods seem to be slightly more accurate.

The interested reader may refer to the article of Tryggvason [26] for an overview of the
Rayleigh–Taylor flow problem.

The objective of this paper is to extend to the case of two-phase Stokes equations a finite element-
based interface capturing algorithm that was recently developed [27]. The solution scheme can
be divided into four steps: (1) solution of the advection equation for the pseudo-concentration F
by a streamline upwind Petrov–Galerkin (SUPG) method [28]; (2) filtering of F as proposed in
Reference [29]; (3) solution of the Stokes equations for the velocity and pressure; and (4) automatic
remeshing following the work of Bertrand et al. [30] and Devals et al. [31]. In Reference [27], the
overall interface capturing algorithm was used to solve moving interface with a known velocity
field. In the present work, the velocity field is unknown and the method is coupled to a mixed
finite element method for the solution of the Stokes equations.

First, the two-phase flow problem to be solved will be presented. Next, the interface capturing
algorithm will be recalled and the overall method will be described. Finally, the accuracy and the
robustness of the method will be investigated in the case of the classical Rayleigh–Taylor flow
problem.

2. TWO-PHASE FLOW PROBLEM

Let us consider the flow of two immiscible and incompressible fluids in computational domain �,
obtained by solving the Navier–Stokes and continuity equations:

�(F)

(
�v
�t

+ v · grad v
)

= �(F)�v − grad p + f in � (1)

div v= 0 in � (2)
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and the advection equation of a pseudo-concentration for F

�F
�t

+ v · grad F = 0 in � (3)

where �, �, v, p, f represent the density, the viscosity, the velocity, the pressure and a body force
like gravity, for instance. The value of F that lies between 0 and 1 depends on the distribution of
the two fluids in the domain. F is set to 1 for fluid 1 and 0 for fluid 2, and F = 0.5 corresponds
to an approximation of the interface position. F is also used to set the value of � and � in the
Navier–Stokes equations, as will be described later. Initial and boundary conditions for F and v
must also be applied for mathematical well-posedness.

In the forthcoming, it will be assumed without loss of generality that the flow is inertialess.
The proposed strategy is by no means restricted to creeping flows and can be extended in a
straightforward manner to the full Navier–Stokes equations.

3. FINITE ELEMENT-BASED INTERFACE CAPTURING ALGORITHM

The overall numerical strategy for the simulation of the flow of two immiscible fluids as governed
by Equations (1)–(3) is based on the interface capturing method described in Reference [27], and
consists of four main steps:

1. solution of the advection equation (3);
2. filtering of the colour function F ;
3. solution of the flow equations (1) and (2); and
4. automatic remeshing of the computational domain.

Each of these steps will now be described in detail in turn.

3.1. Advection equation

As mentioned in the previous section, the location of the two fluids is computed by a pseudo-
concentration or colour function F , which is the solution of the advection equation (3). In the
present work, this transient advection equation is solved by the SUPG method [28] and three-node
linear triangles. The second-order single step implicit midpoint rule (IMR) is used to integrate this
equation with respect to time, as advocated by Malidi et al. [32] for its nice mass conservation
properties.

3.2. Filtering technique

As described in detail in References [27, 29], the filtering technique used in this work relies on
a change of variable that smoothes out the oscillations of the colour function F . It also forces
the values of F to remain within the range [0, 1], as shown in Figure 1. Let us denote by F̃
the oscillatory solution of Equation (3), obtained with the SUPG finite element method. Then the
oscillation-free solution, F , is obtained after application of the filter:

F = 1

1 + exp(−2�(2F̃ − 1))
(4)
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Figure 1. Illustration of the efficiency of the filtering technique.

where � is a scaling factor that is set to 5 in this work (refer to Reference [27] for more details
on the value of �). It is important to underline that, by construction, the function F also satisfies
Equation (3). The direct consequence of this property is that one can take as initial and boundary
conditions for F̃ those for F . F can be recovered a posteriori by applying transformation (4).

3.3. Flow equations

The momentum equation (1) and the continuity equation (2) are solved directly in a decoupled
manner by means of the Uzawa algorithm [33]. The equations are discretized by means of the
discontinuous-pressure quadratic P+

2 − P1 Crouzeix–Raviart element [34]. The first-order implicit
Euler scheme is used to integrate the momentum equation with respect to time. The values of
the dynamic viscosity � and density � are determined as a weighted average with respect to the
value of F :

� =�1F + (1 − F)�2 (5)

where�1 and�2 denote the properties (dynamic viscosity or density) of phases 1 and 2, respectively.

3.4. Automatic mesh refinement technique

An automatic mesh refinement technique is required as part of the interface capturing strategy to
model accurately the shock-like behaviour of this interface and to keep it as sharp and as smooth
as possible. The mesh refinement technique used in this work and described in Reference [31],
relies on one single coarse reference mesh that is refined locally around the interface, using the
values of the colour function F̃ as a remeshing indicator.

Figure 2 illustrates the four steps of this technique in the case of the Rayleigh–Taylor flow
problem. First, the contour line F̃ = 0.5 is used to determine the elements to be refined on the
reference mesh of the computational domain (Figures 2(a) and (b)). In fact, they correspond to
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Figure 2. Automatic mesh refinement technique: (a) reference mesh with contour line F = 0.5; (b) zoom
of (a); (c) selection of elements to be refined; (d) creation of a control point for each element to be
refined; (e) generation of new locally refined mesh; and (f) zoom out of (e) with contour line F = 0.5.

those elements for which F̃ lies between preset values F̃ = 0.5 ± �, where � is a parameter that
controls the width of the region to refine (Figure 2(c)). The targeted elements are next flagged
with control points arbitrarily located at their centre (Figure 2(d)). The mesh is then adapted for
each element lying within a preset distance from these control points. The element is split into
four elements in such a way that the regularity of the child elements is preserved, and a further
refinement step in neighbouring elements may be required, owing to the presence of hanging nodes
to satisfy finite element continuity (Figures 2(e) and (f)). Note that this procedure can be repeated
to generate meshes that are finer and finer in the vicinity of the fluid interface.

In our current implementation, the number of mesh refinements or iterations is set by the user,
but a criterion based on the variation of F̃ between two successive iterations could be used for
more flexibility. In this study, the maximum number of iterations was arbitrarily fixed to 2 to have
the same minimum mesh size �h at the interface for the fine uniform grid and for the locally
refined grid (see Section 4.1). Moreover, the mesh size away from the interface for the latter grid
case corresponds to the mesh size of the coarse grid.

The algorithm of the overall method is summarized in Figure 3 for the steady-state and the
unsteady-state cases. This algorithm will now be briefly discussed for the unsteady-case. First, F̃
must be initialized. Then, at each time step, the following set of actions must be taken: F̃ is filtered
according to (4) to generate F , from which physical parameters � = �(F) and � = �(F) can be
obtained; the flow equations and the advection equation are solved for v, p and F̃ ; the interface is
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Figure 3. Schematic of the overall algorithm: 1 refers to the steady-state
case and 2 to the unsteady-state case.

updated from F̃ , and control points are generated according to F̃ = 0.5± �; the reference mesh is
then adapted by performing one or more iterations of the automatic refinement procedure described
in this section; finally, the current solution is projected onto the new mesh using standard finite
element interpolation before going to the next time step. For the steady-state case, many refinement
passes can be achieved, each of which consists of recomputing the current solution after fine-tuning
the position of the interface and adapting the mesh accordingly.

4. RESULTS AND DISCUSSION

In this study, the classical viscous Rayleigh–Taylor (RT) flow problem is solved to assess the
efficiency of the interface capturing method.
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4.1. Problem definition

The domain is a rectangular box of dimension L × 4L , with L = 0.25m, as shown in Figure 4.
Symmetric boundaries are used on the left and the right sides of the domain. At the top and at the
bottom of the domain, slip conditions are imposed. The initial pressure is the hydrostatic pressure,
and a slight perturbation is applied initially at the interface, defined by y = 4L/2+0.1 cos(�x/L),
where (x, y) represents the co-ordinates of the domain.

The two fluids are incompressible with a density ratio �1/�2 and a dynamic viscosity ratio
�1/�2 both equal to 2, which gives the same kinematic viscosity � = �/� for both fluids. More
precisely, �1 is equal to 998 kgm−3 and �1 to 20 Pa s.

Three meshing strategies were considered for the simulations of this work. The first one is
based on a fixed and structured mesh of 2× 10× 40 regular triangular elements (Figure 5(a)),
which corresponds to a mesh size �h of 0.025m and yields 440 equations for the advection
problem and 3198 velocity equations for the flow problem. The second strategy is also based
on a fixed mesh but the latter is globally refined with 2× 40× 160 regular triangular elements
and �h = 0.00625m, which corresponds to 6601 pseudo-concentration unknowns and 51 198
velocity unknowns (Figure 5(b)). Finally, the third strategy is based on the 2× 10× 40 finite
element mesh, which is adapted at the interface at each time step by performing two passes of the
automatic refinement procedure of Section 3.4. This scenario led to meshes with �h comprised
between 0.00625 and 0.025m, a number of pseudo-concentration unknowns between 745 and
2062, and a number of velocity unknowns between 5599 and 16 127. Figure 5(c) displays the
mesh obtained with this strategy at t = 0 s. A summary of the characteristic of the meshes can be

Figure 4. Geometry for the Rayleigh–Taylor flow problem.
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Figure 5. Meshes for the Rayleigh–Taylor flow problem at t = 0 s: (a) structured mesh with 2× 10× 40
regular triangular elements; (b) structured mesh with 2× 40× 160 regular triangular elements;

and (c) 2× 10× 40 locally refined mesh.

Table I. Characteristics of the meshes for the different strategies.

Number of unknowns

Strategy Mesh Pseudo-concentration Velocity

1 2× 10× 40 structured mesh 440 3198
2 2× 40× 160 structured mesh 6601 51 198
3 Locally refined reference mesh at t = 0 s 745 5599
3 Locally refined reference mesh at t = 1.1 s 2062 16 127

2× 80× 320 structured mesh 26 001 20 4798

found in Table I. In all the cases discussed below, a transient simulation was carried out using a
time step �t = 5× 10−3 s, which was determined using a CFL rule with the finest mesh.

4.2. Results

First, to assess the solution accuracy with the 2× 40× 160 finite element mesh, the solution
obtained with this mesh at t = 1.1 s was compared to that obtained with an even finer mesh
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Figure 6. (a) Comparison of the solution at t = 1.1 s with a 2× 40× 160 finite element mesh (in red)
and a 2× 80× 320 finite element mesh (in black); and (b) zoom of (a).

comprising 2× 80× 320 regular mesh (26 001 and 204 798 equations for the advection and the
Stokes equations, respectively). As can be seen in Figure 6, both solutions are similar except near
the tip of the ‘mushroom’. The difference between the two velocity fields (not shown here) is
also small, with a maximum relative error on the velocity less than 0.7%. For these reasons and
as it is less time consuming, the 2× 40× 160 finite element mesh was chosen as the reference
solution mesh.

Figure 7 presents at different times (from 0.3 to 0.9 s) the velocity field and the contour line
F = 0.5 obtained with the three meshing strategies summarized in Table I. The patterns seem to
be globally the same, but some differences are highlighted in Figure 8 that displays the contour
line F = 0.5 for the three meshing strategies at t = 0.9 s. In particular, it shows that the interface
predicted with two passes of the automatic mesh refinement algorithm is comparable to that
obtained with the 2× 40× 160 finite element mesh. However, the interface is poorly described
with the 2× 10× 40 finite element mesh. These observations are confirmed in Figure 9, which
compares the maximum velocity predicted with the three meshing strategies. It shows that the
2× 40× 160 finite element mesh and the locally refined mesh yield similar maximum velocity
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Figure 7. Velocity fields and contour lines F = 0.5 for the: (1) 2× 10× 40 finite element mesh (meshing
strategy #1); (2) 2× 40× 160 finite element mesh (meshing strategy #2); and (3) locally refined mesh

(meshing strategy #3), at various times: (a) t = 0.3 s; (b) t = 0.5 s; (c) t = 0.7 s; and (d) t = 0.9 s.
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Figure 8. Comparison of the contour line F = 0.5 for the 2× 10× 40 finite element mesh (in red), the
locally refined mesh (in black) and the 2× 40× 160 finite element mesh (in green) at t = 0.9 s.

variations over time. In fact, the relative differences are smaller than 3.5%. This difference goes
up to 8.6% between the 2× 10× 40 finite element mesh and the locally refined mesh.

Figure 10 illustrates the importance of the filtering technique. The pseudo-concentration field is
shown without and with the filtering technique in Figures 10(a) and (b), respectively. It is pretty
clear that with a coarse grid, the diffusion is important around the interface (Figure 10(a1)). As the
mesh size is reduced (Figure 10(a2) and (a3)), the diffusion is less important around the interface.
The combination of a fine mesh and the filtering technique gives accurate results as shown in
Figures 10(b2) and (b3) for the strategy 2 and 3, respectively. In the first case (Figure 10(b1)), the
mesh is too coarse to give good results.

As it is an important point of this work, the numerical conservation of F was studied. Let us
denote by Fh and uh the computed colour function and the velocity field, respectively. The conser-
vation equation can then be integrated over the computational domain � to yield the conservation
error E :

E =
∫

�

(
�Fh
�t

+ div(Fhuh)
)
d� (6)
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Figure 10. (a) Non-filtered solution; and (b) filtered solution, at t = 0.9 s for the differ-
ent strategies: (1) 2× 10× 40 finite element mesh; (2) 2× 40× 160 finite element mesh;

and (3) automatic mesh refinement strategy.

As can be seen in Figure 11 that displays the variation of E with respect to time for the coarse
2× 10× 40 finite element mesh, the global conservation error E increases from 0.2× 10−4 to
0.2× 10−3 after 1.1 s. For the fine 2× 40× 160 finite element mesh, the variation is much less
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Figure 11. Variation of error on mass conservation with respect to time.

steep and smaller than 10−5. For the automatic mesh refinement strategy, the error oscillates but
is significantly smaller than that with the coarse mesh. Despite this oscillatory behaviour, the
error is comparable or smaller than that of the fine mesh before t = 0.8 s, after which it increases
more rapidly. Note that time t = 0.8 s corresponds to the onset of the formation of the tips of the
mushroom, which makes the shape of the interface more complex.

Figure 12 shows the local conservation of fluid mass over the domain at time t = 0.7 s,
for the three meshing strategies. In all three cases, the interface is clearly the place where
the local error is higher. One may also notice that local mass conservation is best satisfied
with the fine 2× 40× 160 finite element mesh, closely followed by the local refined mesh-
ing strategy. Mass conservation with the coarse 2× 10× 40 finite element mesh is not as well
satisfied.

5. CONCLUSION

In this work, an efficient finite element-based strategy for the two-phase Navier–Stokes equations
was presented. The overall simulation strategy includes an interface capturing method that is based
on a filtering technique for the colour function Fand an automatic mesh refinement procedure to
be applied in the vicinity of the interface. The strategy was described in detail and then applied to
the solution of the classical Rayleigh–Taylor flow problem.

It was shown in particular that the proposed strategy is efficient and yields solutions that are of
comparable accuracy as those that can be obtained using a fine mesh with many more equations
to solve.

In future work, the proposed strategy will be applied to other multiphase flow problems of
industrial relevance. The influence of the integration scheme will also be investigated since recent
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Figure 12. Fringes showing local mass conservation over the domain for the: (a) 2× 10× 40 finite element
mesh; (b) 2× 40× 160 finite element mesh; and (c) automatic mesh refinement strategy, at time t = 0.7 s.

work by Malidi et al. [32] showed that the time scheme used may have a significant impact on
the accuracy of the solution.
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